Decomposing Non-Redundant {Sharing} by Complementation

Title
Publication TypeJournal Article
Year of Publication2002
AuthorsZaffanella E, Hill PM, Bagnara R
JournalTheory and Practice of Logic Programming
Volume2
Pagination233–261
ISSN1471-0684
Keywordsabstract interpretation, complementation, domain decomposition, logic programming, sharing analysis, software verification, static analysis
Abstract

Complementation, the inverse of the reduced product operation, is a technique for systematically finding minimal decompositions of abstract domains. Filé and Ranzato advanced the state of the art by introducing a simple method for computing a complement. As an application, they considered the extraction by complementation of the pair-sharing domain PS from the Jacobs and Langen’s set-sharing domain SH. However, since the result of this operation was still SH, they concluded that PS was too abstract for this. Here, we show that the source of this result lies not with PS but with SH and, more precisely, with the redundant information contained in SH with respect to ground-dependencies and pair-sharing. In fact, a proper decomposition is obtained if our non-redundant version of SH, PSD, is substituted for SH. To establish the results for PSD, we define a general schema for subdomains of SH that includes PSD and Def as special cases. This sheds new light on the structure of PSD and exposes a natural though unexpected connection between Def and PSD. Moreover, we substantiate the claim that complementation alone is not sufficient to obtain truly minimal decompositions of domains. The right solution to this problem is to first remove redundancies by computing the quotient of the domain with respect to the observable behavior, and only then decompose it by complementation.

DOI10.1017/S1471068401001351
File attachments: 
We are a passionate team of experts. Do not hesitate to let us have your feedback:
You may be surprised to discover just how much your suggestions matter to us.